

TMC/D/79/89

Resi.: D-79 Vasant Vihar; Office: 89-Laxmi bai colony

Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601</u> (P); <u>9907757815;</u> 9425110860; 425772164; Email:agyat99@gmail.com. PREMIER INSTITUTE for X, XI & XII.[©] publication of any part of this paper is strictly prohibited.

Visit us at www.agyatgupta.com						
	The number of contact of each type made in two cities X and Y is given in the matrix B as					
	Telephone House call Letters					
	$B = \begin{bmatrix} 1000 & 500 & 5000 \\ 3000 & 1000 & 10000 \end{bmatrix} City X$ City Y					
	Find the total amount spent by the party in the two cities.					
	What should one consider before casting his/her vote - party's promotional activity or their social					
	activities ?					
Q.8	Evaluate $\int \left(\frac{1}{\sqrt{\sin^3 x \sin(x+a)}}\right) dx$.					
	OR					
	Evaluate : $\int (2\sin 2x - \cos x) \left(\sqrt{6 - \cos^2 x - 4\sin x} \right) dx$					
Q.9	Verify mean value theorem for the function $f(x) = (x - 4)(x - 6)(x - 8)$ on the interval [4, 10].					
	OR					
0.10	Find the point on the curve $9y^2 = x^3$, where the normal to the curve makes equal intercepts on the axes.					
Q.10	Using the properties of determinants, prove the following :					
	$\begin{bmatrix} 1 & X & X+1 \\ 2y & y(y-1) & y(y+1) \\ 0 & y(y+1) $					
	$\begin{vmatrix} 2x & x(x-1) & x(x+1) \\ 3x(1-x) & x(x-1)(x-2) & x(x+1)(x-1) \end{vmatrix} = 6x (1-x)$					
Q.11	$\xrightarrow{\rightarrow}$					
	Find the value of x for which the angle between the vectors $a = 2x^2i + 4xj + k \& b = 7i - 2j + xk$ is					
0.12	3					
2	Evaluate $\int_{-1}^{\overline{2}} x \sin \pi x dx$					
Q.13	Find the particular solution of the differential equation $(y - \sin x)dx + (\tan x)dy = 0$ satisfying the					
0.14	$\begin{array}{c} \text{condition that } y = 0 \text{ when } x = 0. \end{array}$					
2	If $y = x^3 \log \left(\frac{1}{x}\right)$, then prove that $x \frac{d^2 y}{dx^2} - 2 \frac{dy}{dx} + 3 x^2 = 0$.					
Q.15	In a set of 10 coins, 2 coins are with heads on both the sides. A coin is selected at random from this set					
	had heads on both the sides.					
Q.16	Find the differential equation for all the straight lines, which are at a unit distance from the origin.					
Q.17	Find the value of k for which the following lines are perpendicular to each other					
	$\frac{x+3}{k-5} = \frac{y-1}{1} = \frac{5-z}{-2k-1}; \frac{x+2}{-1} = \frac{2-y}{-k} = \frac{z}{5}.$ Hence find the equation of the plane containing the above					
	lines.					
	Find the equation of the line passing through the point (-4, 3, 1), parallel to the plane $x + 2v - z = 0$ and					
	intersecting the line $\frac{x+1}{3} = \frac{y-3}{-2} = \frac{z-2}{1}$.					
· · · · ·						

TMC/D/79/89

2 P.T.O. Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601</u> (P); <u>9907757815</u>; 9425110860; 425772164; **Email:agyat99@gmail.com.** PREMIER INSTITUTE for X, XI & XII. © publication of any part of this paper is strictly prohibited.

Visit us af	WWW.8	agyatgup	ta.com
-------------	-------	----------	--------

Q.18	Evaluate $\int_0^4 (x-1 + x-2 + x-3) dx$.				
0 19	$\left(\begin{array}{c} \alpha \\ \end{array} \\ \left(\begin{array}{c} \alpha \\ \end{array} \\ \end{array} \right) \right) = \left(\begin{array}{c} \alpha \\ \alpha \\ \end{array} \right)$				
Q.17	Prove that: $2\tan^{-1}\left\{\tan\frac{\alpha}{2}, \tan\left(\frac{\pi}{4} - \frac{\beta}{2}\right)\right\} = \tan^{-1}\frac{\sin\alpha\cos\beta}{\cos\alpha + \sin\beta}$				
	OR				
	If $(\tan^{-1} x)^2 + (\cot^{-1} x)^2 = \frac{5\pi^2}{8}$ Find x.				
	SECTION C				
Q.20	Using integration, find the area of the region $\{(x, y): x^2 + y^2 \le 1 \le x + \frac{y}{2}; x, y \in R\}$				
Q.21	Two trusts A & B receive Rs. 70000 and 55000 respectively from central government to award prize to				
	persons of a district in 3 fields agriculature, eduction and social services. Trust a awarded 10, 5 and 15 persons in the field of agriculature, eduction and social services respectively while trust B awarded 15				
	10 and 5 persons in the field of agriculature, education and social services respectively. If all three prizes				
	together amount to Rs. 6000, them find amount of each prize by matrix method.				
0.22	A company manufactures three kinds of calculates : A, B and C is its two factories I and II. The company				
X	has got an order for manufacturing at least 6400 calculators of kind A, 4000 of kind B and 4800 of kind				
	C. the daily output of factory I is of 50 calculators of kind A, 50 calculators of kind B, and 30 calculators				
	of kind C. The daily output of factory II is of 40 calculators of kind A, 20 of kind B and 40 of kind C. The cost per day to run factory Lis Rs 12000 and of factory II is Rs 15000. How many days do the two				
	factories have to be in operation to produce the order with the minimum cost? Formulate this problem as				
	an LPP and solve it graphically.				
Q.23	Two numbers are selected at random (without replacement) from positive integers 2, 3, 4, 5, 6 and 7. Let				
	X denote the larger of the two numbers obtained. Find the mean and variance of the probability distribution of X				
	OR				
	Three cards are drawn successively with replacement from a well shuffled pack of 52 cards. Find the				
0.24	probability distribution of the number of spades. Hence find the mean of the distribution. r = 3, $2 = v$, $z = 1$				
Q.24	Prove that the lines line $\frac{x-y}{3} = \frac{z-y}{4} = \frac{z+1}{1}$ and $x + 2y + 3z = 0 = 2x + 4y + 3z + 3$ meet at a point				
0.25	(9,-6,1).				
Q.23	was decided that there should be 8 windows of same size in the hall for proper light and fresh air. Each				
	window be in the form of rectangle surmounted by equilletral triangle. The total perimeter of each				
	window is 15 meter. Find the diminsions of the rectangular part of each window so as to admit				
	maximum light and fresh air through the whole opening. Write the two value points benind the decision				
	OR				
	A given rectangular area is to be fenced off in a field whose length lies along a straight river. If no fencing is needed along the river, show that the least length of fencing will be required when length of				
	the field is twice its breadth.				
Q.26	If $f: R - \left\{\frac{7}{5}\right\} \to R - \left\{\frac{3}{5}\right\}$ be defined as $f(x) = \frac{3x+4}{5x-7} \& g: R - \left\{\frac{3}{5}\right\} \to R - \left\{\frac{7}{5}\right\}$ be defined as $g(x) = \frac{7x+4}{5x-3}$.				
	Prove that $gof = I_A \& (fog) = I_B$ where $B = R - \{\frac{3}{5}\} \& A = R - \{\frac{7}{5}\}$. Find also $g^{-1}, f^{-1} \& (gof)^{-1}$.				
	" SUCCESS IS HOW HIGH YOU BOUNCE WHEN YOU HIT BOTTEOM "				
TMC/D/7	9/89 3 P.T.O.				

Resi.: D-79 Vasant Vihar ; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601</u> (P); <u>9907757815</u>; 9425110860; 425772164; **Email:agyat99@gmail.com.** PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.

Visit us at www.agyatgupta.com

NOTICE-2015-16

All the students of Target Mathematics are hereby informed that your sectional and <u>FULL SYLLABUS</u> tests will be held as per the following schedule.

TIME :- 10:30 TO 01:30 PM

REPORTING TIME :- 10:15 AM

P.T.O.

The Syllabus for the test series is as follows :

DATE	CLASS - X	CLASS - XI	CLASS - XII
27-Dec-15	QUADRATIC EQUATION, ARITHEMATIC PROGRESSION, SURFACE AREA AND VOLUME ; PROBABILITY ,COORDINATE GEOMETRY& AREA RELATED TO CIRCLES	SEQUENCE AND SERIES FULL TRIGNOMETRIC &MATHEMATICAL INDUCTION	FULL COURSE
3-Jan-16	QUADRATIC EQUATION, ARITHEMATIC PROGRESSION, HEIGHTS AND DISTANCES ; AREA RELATED TO CIRCLES ; PROBABILITY & COORDINATE GEOMETRY	PERMUTATION & COMBINATION , COMPLEX NUMBER , QUADRATIC EQUATION & BINOMIAL THEOREM, STATISTICS	FULL COURSE
10-Jan-16	FULL COURSE	CBSE :- LINEAR INEQUATION, SETS & RELATION; CO-ORDINATE 3- D,PROBABILITY,STRAIGHT LINES, CONIC SECTIONS STATE- BOARD :- LINEAR PROGRAMM ING; EXPONENTIAL & LOGARITHMIC SERIES, SIMULTANEOUS EQUATION,STRAIGHT LINES, FAMILY OF LINES, CONIC SECTIONS	FULL COURSE (OUTSIDE PAPER)
17-Jan-16	FULL COURSE (OUTSIDE PAPER)	FULL COURSE	FULL COURSE
24-Jan-16	FULL COURSE	FULL COURSE	FULL COURSE (OUTSIDE)
31-Jan-16	FULL COURSE	FULL COURSE	FULL COURSE
7-Feb-16	FULL COURSE (OUTSIDE PAPER)	FULL COURSE	FULL COURSE
14-Feb-16	FULL COURSE	FULL COURSE	FULL COURSE
21-Feb-16	FULL COURSE	FULL COURSE	FULL COURSE

NOTE :- ALL STUDENTS MUST CARRY THEIR " IDENTITY CARD".

"HARD WORK IS THE ONLY INVESTMENT THAT NEVER FAILS".

DIRECTOR AGYAT GUPTA

Agyat Gupta (TARGET MATHEMATICS)

Ph.: 4010685, 2630601 (O), Mobile : 9425109601

TMC/D/79/89

Resi.: D-79 Vasant Vihar; Office : 89-Laxmi bai colony

Ph. :2337615; 4010685®, 2630601(O) Mobile : <u>9425109601</u> (P); <u>9907757815</u>; 9425110860; 425772164; **Email:agyat99@gmail.com.** PREMIER INSTITUTE for X, XI & XII.© publication of any part of this paper is strictly prohibited.

4